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Diamagnetism of Wigner oscillators 

J M Manoyant 
Numara Research Laboratories, PO Box 50162, Caracas 1050, Venezuela 

Received 25 July 1986 

Abstract. The orbital magnetic moment and the orbital magnetic susceptibility at finite 
temperature for a charged oscillator in a magnetic field of arbitrary strength are calculated 
exactly. Landau diamagnetism, a purely quantum mechanical non-vanishing diamagnetic 
susceptibility in the absence of a magnetic field and the Langevin formula are obtained as 
special cases. 

1. Introduction 

A particularly interesting thermodynamical property of solids is the contribution of 
conduction electrons to the magnetic susceptibility of a material. I t  is a remarkable 
fact that the contribution we expect on the basis of classical theory is identically zero. 
This may be shown by considering the classical Hamiltonian for a charged particle in 
a magnetic field: 

where p is a distribution function depending only upon the energy of the particle. By 
performing the integration over momentum first and  changing variables to p '  = 
p - eA(r)/c we obtain a form which is entirely independent of the magnetic field. 
Therefore, the susceptibility must vanish given that it is directly proportional to the 
second derivative of the total energy with respect to the magnetic field. This result 
reflects the fact that classically a magnetic field does not change the energy of a charged 
particle but simply deflects it. This holds for any V(r ) .  

At a quantum mechanical level, however, the orbital motion of a charged particle 
in a magnetic field is quantised. The energy eigenvalues as well as the total energy 
depend upon the magnetic field and hence there is a corresponding contribution to 
the susceptibility: this is Landau diamagnetism [ 1,2].  

More general and realistic models must, however, include a potential in addition 
to the magnetic field, although in most cases this will considerably complicate the 
solution of the corresponding quantum mechanical problem. One such model which 
can be exactly solved is a localised Wigner oscillator [3 ,4]  in a magnetic field of 
arbitrary strength [5]. 
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We would like to show in this paper that it is possible to calculate exactly the 
magnetic moment of this system at finite temperature, reproducing other previously 
known results as special cases. 

2. The partition function 

The Hamiltonian for a localised Wigner oscillator in a magnetic field of arbitrary 
strength is 

where the magnetic field is applied along the z axis and the gauge is chosen such that 
the vector potential A is given by i B  x r. The motion along the z axis is of no interest 
and thus will be omitted. 

The corresponding Bloch density matrix in polar coordinates (r, 8 )  is [ 51 

m n  
C ( r r 0 p ) = 2 ~ h  s inh(phR) 

\ 

-2rro[cos( 8 - 8,) cosh(phw)+i sin( 8 - 8,) sinh(phw)]} 

where p = l / k T ,  w is the Larmor frequency eB/2mc and flz = w2+A/m. 
The partition function is given by 

Z ( p )  = lom 
which by using (4) yields 

r d r  d 8  C(rrp) 

1 
Z(P)=2[cosh(phR) -cosh(phw)]' 

The eigenenergies can be easily obtained by rewriting (6) as 
w)/2] sinh[ph(O- w)/2]} and expanding in powers of exponentials: 

/{4sin 

r=o n = O  

3 

(4) 

( 7 )  

from which we can read the energy eigenvalues as E (  1, n )  = hi2 + ( I  + n )  hi2 + ( I  - n )  ho. 

3. The orbital magnetic moment and the susceptibility 

The thermally averaged orbital magnetic moment is ( P * ) ~ =  -aF /aB  where F is the free 
energy -[ln Z(p)]/p and therefore 

where pB is the Bohr magneton eh/2mc. Using (6) we obtain 

( P ) ~ =  -$pB( (coth[ph(R+w)/2] -coth[ph(n-  w ) / 2 ] }  

+:{coth[ph(n + ~ ) / 2 ]  +coth[ph(n - 0)/21}) n ( 9 )  
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which can also be written as 

( P ) ~ =  -pB[(w/R) sinh(phR) -sinh(phw)]/{2 sinh[ph(R+ w)/2] 

x sinh[ph(R - w ) / 2 ] } .  (10) 

The orbital magnetic susceptibility ,yo = a ( ~ ) ~ / d B  equals (pB/ f ~ ) d ( p ) ~ / J w .  
By using (9) we obtain 

cosech2[ph (a + w)/2](R + w )' + cosech2[PA (0 - w)/2]( R - 0)' 

2 
--{coth[ph(R + 0)/2] + coth[ph(R - ~ ) / 2 ] } ( 0 ' - ~ ' )  

Pha 
These are exact results. 

4. Special cases 

We now consider some special cases of equations (9)-(11).  

4.1. Wigner oscillator 

(a) Low-temperature limits 

w 
l im(p)o = -pB - 
P - =  R 

From (12) we see that the effect of the harmonic oscillator potential is to lower the 
magnitude of the magnetic moment with respect to the potential-free case. From (13) 
we get ,yo < 0 and thus the Wigner oscillator is diamagnetic at low temperatures. 

(b) High-temperature limits 

hwP 2 B l im(p)o= -pB-= -pB- 
P +O 3 3kT 

1 
limXo= -pi--  
P - 0  3kT' 

At high temperatures, we find both results to be independent of the harmonic 
oscillator potential and the susceptibility is furthermore independent of the strength 
of the magnetic field. The Wigner oscillator is also diamagnetic at high temperatures. 

4.2. Zero magnetic j e l d  

lim(p)o = 0 
U - 0  

2 
lim xo = f P p B  '[ cosech '('yo) - - - c o t h ( Y ) ]  
W + O  ' h a 0  

where h / m  is the harmonic oscillator frequency. 
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Equation (16) yields the expected result. Notice however from (17) that there is 
a non-vanishing diamagnetic susceptibility even in the absence of a magnetic field. 
This is a purely quantum mechanical effect [ 6 ]  which persists even if we switch off 
the harmonic oscillator potential (i.e. a free charged particle): 

2 1  lim xo = - F ~ - .  
W - 0  3kT 
n-0 

(18) 

It is important to observe that (18) is valid at  all temperatures, whereas (15 )  is a 

(a )  Low-temperature limits 
high-temperature limit only. 

lim ( F ) ~  = 0 
W - 0  
p - x  

P - . r  

Notice that (19) and (20) can also be obtained directly from (12) and (13 ) .  
(b)  High-temperature limits 

lim ( P ) ~  = 0 
W - 0  
P - X  

1 
lim ,yo = -pi--. 
U - 0  3kT 

4.3. Charged particle in a magnetic Jield 

coth(hwp)-- ) = -pB[ cothi%) -51 (23) 
n-, hwP 

-cosech'( h w p )  +- 
( 1 - W  

Equation (23) is the Langevin formula. 
(a) Low-temperature/strong field limits 

lim (p) , ,  = lim (p)" = - 
P - X  W - I  

These results are valid for all field strengths at low temperatures or for all tem- 

( b )  High-temperature/weak field limits 
peratures in strong fields. 

? 1  lim ,yo = lim ,yo = -ps-. 
P - 0  W - 0  3kT 

This is Landau diamagnetism [ l ,  21 and is valid for all field strengths at high 
temperature or for all temperatures in weak fields. 
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5. Pauli paramagnetism 

Although our main interest in this paper has been to study the diamagnetism of the 
Wigner oscillator, its special cases and limits, we can easily extend our treatment to 
include the paramagnetic effect of the spin of a charged particle. Let us consider 
electrons in particular. 

To our main results (10) and (1 1) we must add 

respectively. At high temperatures, the spin magnetic susceptibility is p i /  kT, which 
is three times larger in magnitude than the orbital magnetic susceptibility and of 
opposite sign. An electron gas will therefore have a total susceptibility of 2 p ; / 3 k T  
at high temperatures and will be paramagnetic. Most simple metals are in fact 
paramagnetic. 

6. Conclusions 

The principal results of this paper are equations (10) and (11). Besides being exact 
results, they correspond to the solution of a more general non-trivial quantum 
mechanical problem of electron crystallisation which naturally arises when a sufficiently 
strong Coulomb repulsion leads electrons to oscillate about lattice sites in harmonic 
potentials. 

Even though genuine Wigner crystals have not yet been unambiguously identified, 
extensive work on highly compensated semiconductors in strong magnetic fields indi- 
cates the relevance of Wigner cystallisation. The results presented herein might find 
appropriate use in this important area of research in the near future. 
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